Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.643
Filtrar
1.
Harmful Algae ; 134: 102609, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38705612

RESUMEN

Modified clay compounds are used globally as a method of controlling harmful algal blooms, and their use is currently under consideration to control Karenia brevis blooms in Florida, USA. In 1400 L mesocosm tanks, chemical dynamics and lethal and sublethal impacts of MC II, a polyaluminum chloride (PAC)-modified kaolinite clay, were evaluated over 72 h on a benthic community representative of Sarasota Bay, which included blue crab (Callinectes sapidus), sea urchin (Lytechinus variegatus), and hard clam (Mercenaria campechiensis). In this experiment, MC II was dosed at 0.2 g L-1 to treat bloom-level densities of K. brevis at 1 × 106 cells L-1. Cell removal in MC II-treated tanks was 57% after 8 h and 95% after 48 h. In the water column, brevetoxin analogs BTx-1 and BTx-2 were found to be significantly higher in untreated tanks at 24 and 48 h, while in MC II-treated tanks, BTx-3 was found to be higher at 48 h and BTx-B5 was found to be higher at 24 and 48 h. In MC II floc, we found no significant differences in BTx-1 or BTx-2 between treatments for any time point, while BTx-3 was found to be significantly higher in the MC II-treated tanks at 48 and 72 h, and BTx-B5 was higher in MC II-treated tanks at 24 and 72 h. Among various chemical dynamics observed, it was notable that dissolved phosphorus was consistently significantly lower in MC II tanks after 2 h, and that turbidity in MC II tanks returned to control levels 48 h after treatment. Dissolved inorganic carbon and total seawater alkalinity were significantly reduced in MC II tanks, and partial pressure of CO2 (pCO2) was significantly higher in the MC II-only treatment after 2 h. In MC II floc, particulate phosphorus was found to be significantly higher in MC II tanks after 24 h. In animals, lethal and sublethal responses to MC II-treated K. brevis did not differ from untreated K. brevis for either of our three species at any time point, suggesting MC II treatment at this dosage has negligible impacts to these species within 72 h of exposure. These results appear promising in terms of the environmental safety of MC II as a potential bloom control option, and we recommend scaling up MC II experiments to field trials in order to gain deeper understanding of MC II performance and dynamics in natural waters.


Asunto(s)
Hidróxido de Aluminio , Dinoflagelados , Floraciones de Algas Nocivas , Toxinas Marinas , Animales , Dinoflagelados/efectos de los fármacos , Dinoflagelados/fisiología , Dinoflagelados/química , Arcilla/química , Bivalvos/fisiología , Bivalvos/efectos de los fármacos , Erizos de Mar/fisiología , Erizos de Mar/efectos de los fármacos , Florida , Braquiuros/fisiología , Braquiuros/efectos de los fármacos , Mercenaria/efectos de los fármacos , Mercenaria/fisiología , Silicatos de Aluminio/farmacología , Silicatos de Aluminio/química
2.
J Proteome Res ; 23(5): 1603-1614, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38557073

RESUMEN

Sperm capacitation is broadly defined as a suite of biochemical and biophysical changes resulting from the acquisition of fertilization ability. To gain insights into the regulation mechanism of crustacean sperm capacitation, 4D label-free quantitative proteomics was first applied to analyze the changes of sperm in Eriocheir sinensis under three sequential physiological conditions: seminal vesicles (X2), hatched with the seminal receptacle content (X3), and incubated with egg water (X5). In total, 1536 proteins were identified, among which 880 proteins were quantified, with 82 and 224 proteins significantly altered after incubation with the seminal receptacle contents and egg water. Most differentially expressed proteins were attributed to biological processes by Gene Ontology annotation analysis. As the fundamental bioenergetic metabolism of sperm, the oxidative phosphorylation, glycolysis, and the pentose phosphate pathway presented significant changes under the treatment of seminal receptacle contents, indicating intensive regulation for sperm in the seminal receptacle. Additionally, the seminal receptacle contents also significantly increased the oxidation level of sperm, whereas the enhancement of abundance in superoxide dismutase, peroxiredoxin 1, and glutathione S-transferase after incubation with egg water significantly improved the resistance against oxidation. These results provided a new perspective for reproduction studies in crustaceans.


Asunto(s)
Braquiuros , Proteómica , Capacitación Espermática , Espermatozoides , Animales , Masculino , Braquiuros/metabolismo , Braquiuros/fisiología , Proteómica/métodos , Capacitación Espermática/fisiología , Espermatozoides/metabolismo
3.
Behav Processes ; 217: 105026, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38582301

RESUMEN

Species of crab have been shown to spatially track and navigate to consequential locations through different processes, such as path integration and landmark orienting. Few investigations examine their ability to wayfind in complex environments, like mazes, with multiple intersections and how they may utilize specific features to benefit this process. Spatial learning potentially would lend a fitness advantage to animals living in complicated habitats, and ghost crab (Ocypode quadrata) is a semiterrestrial species that typically occupies extensive beach environments, which present many navigational challenges. Despite their potential, there are currently no studies that investigate forms of spatial cognition in these animals. To better diversify our knowledge of this trait, the current research exposed ghost crab to a maze with seven intersections. Animals were given multiple trials to learn the location of a reward destination to a specific criterion proficiency. In one condition several landmarks were distributed throughout the maze, and in another the environment was completely empty. Results showed that ghost crab in the landmark present group were able to learn the maze faster, they required significantly fewer trials to reach the learning criterion than those in the landmark absent group. However, only approximately half of the total sample met the learning criterion, indicating the maze was rather difficult. These findings are interpreted through theories of route learning that suggest animals may navigate by establishing landmark-turn associations. Such processes have implications for the cognitive ability of ghost crab, and spatial learning in this species may support the notion of convergent evolution for this trait.


Asunto(s)
Braquiuros , Aprendizaje por Laberinto , Navegación Espacial , Animales , Braquiuros/fisiología , Aprendizaje por Laberinto/fisiología , Navegación Espacial/fisiología , Masculino , Percepción Espacial/fisiología , Señales (Psicología) , Aprendizaje Espacial/fisiología
4.
Sci Total Environ ; 930: 172633, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643877

RESUMEN

This study aims to evaluate the effects of oxytetracycline (OTC) on detoxification and oxidative defense in the hepatopancreas and intestine of Chinese mitten crab (Eriocheir sinensis) under cadmium (Cd) stress. The crab was exposed to 0.6 µM Cd, 0.6 µM OTC, and 0.6 µM Cd plus 0.6 µM OTC for 42 days. Our results showed that in the intestine, OTC alone enhanced protein carboxylation (PC) and malondialdehyde (MDA) contents, which was associated with the increased OTC accumulation. Compared to Cd alone, Cd plus OTC increased Cd and OTC contents, and reduced detoxification (i.e., glutathione (GSH) content, gene expressions of cytochrome P450 (CYP) isoforms, 7-ethoxyresorufin O-deethylase (EROD) activity, mRNA levels and activities of glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST)), and antioxidant defense (i.e., gene expressions and activities of catalase (CAT) and superoxide dismutase (SOD)) in the intestine, leading to the increased in PC and MDA contents, suggesting that OTC had a synergistic effect on Cd-induced oxidative damage. In the hepatopancreas, although OTC alone increased OTC accumulation, it did not affect PC and MDA contents. Compared to Cd alone, Cd plus OTC reduced MDA content, which was closely related to the improvement of detoxification (i.e., GSH content, mRNA levels of CYP isoforms, EROD activity, gene expressions and activities of GPx, GR and GST), and antioxidant defense (gene expressions and activities of CAT and SOD, metallothionein content). Aryl hydrocarbon receptor (AhR) and nuclear factor E2-related factor 2 (Nrf2) transcriptional expressions were positively correlated with most detoxification- and antioxidant-related gene expressions, respectively, indicating that AhR and Nrf2 were involved in the regulation of these gene expressions. Our results unambiguously demonstrated that OTC had tissue-specific effects on Cd-induced toxicological effect in E. sinensis, which contributed to accurately evaluating Cd toxicity modulated by TCs in crab.


Asunto(s)
Antioxidantes , Braquiuros , Cadmio , Hepatopáncreas , Oxitetraciclina , Contaminantes Químicos del Agua , Animales , Braquiuros/efectos de los fármacos , Braquiuros/fisiología , Braquiuros/metabolismo , Cadmio/toxicidad , Oxitetraciclina/toxicidad , Hepatopáncreas/metabolismo , Hepatopáncreas/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Antioxidantes/metabolismo , Intestinos/efectos de los fármacos , Inactivación Metabólica , Estrés Oxidativo/efectos de los fármacos
5.
Artículo en Inglés | MEDLINE | ID: mdl-38438092

RESUMEN

The excretory mechanisms of stenohaline marine osmoconforming crabs are often compared to those of the more extensively characterized euryhaline osmoregulating crabs. These comparisons may have limitations, given that unlike euryhaline brachyurans the gills of stenohaline marine osmoconformers possess ion-leaky paracellular pathways and lack the capacity to undergo ultrastructural changes that can promote ion-transport processes in dilute media. Furthermore, the antennal glands of stenohaline marine osmoconformers are poorly characterized making it difficult to determine what role urinary processes play in excretion. In the presented study, ammonia excretory processes as well as related acid-base equivalent transport rates and mechanisms were investigated in the Dungeness crab, Metacarcinus magister - an economically valuable stenohaline marine osmoconforming crab. Isolated and perfused gills were found to predominantly eliminate ammonia through a microtubule network-dependent active NH4+ transport mechanism that is likely performed by cells lining the arterial pockets of the gill lamella where critical Na+/K+-ATPase detection was observed. The V-type H+-ATPase - a vital component to transbranchial ammonia excretion mechanisms of euryhaline crabs - was not found to contribute significantly to ammonia excretion; however, this may be due to the transporter's unexpected apical localization. Although unconnected to ammonia excretion rates, a membrane-bound isoform of carbonic anhydrase was localized to the apical and basolateral membranes of lamella suited for respiration. Urine was found to contain significantly less ammonia as well as carbonate species than the hemolymph, indicating that unlike those of some euryhaline crabs the antennal glands of the Dungeness crab reabsorb these molecules rather than eliminate them for excretion.


Asunto(s)
Braquiuros , ATPasas de Translocación de Protón Vacuolares , Animales , Amoníaco/metabolismo , Branquias/metabolismo , Transporte Biológico , Sodio/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Braquiuros/fisiología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
6.
Mar Pollut Bull ; 200: 116107, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38330812

RESUMEN

The anthropogenic construction activities on the coasts, such as pile-driving, generate vibrations that propagate through the substrate. Such substrate-borne vibrations could potentially affect marine organisms inhabiting the benthic environments. However, there is a lack of documented studies on the effects of vibrations on benthic animals. To investigate whether anthropogenic substrate-borne vibrations such as pile-driving operation influence the fiddler crab, Austruca lactea, we measured their locomotion response under vibrations of 35, 120, 250, 500, and 750 Hz generated by a vibrator. We compared the locomotion of crabs between control and vibration-treatment groups using videography. The duration of movements was significantly lower under 120 Hz vibrations compared to the control. Moreover, crab velocity was significantly higher under vibrations of 120 Hz and 250 Hz compared to the control group. Our result suggests that A. lactea can detect low-frequency substrate-borne vibrations and experience stress, leading to increased energy consumption.


Asunto(s)
Braquiuros , Animales , Braquiuros/fisiología , Vibración , Organismos Acuáticos , Locomoción/fisiología
7.
Artículo en Inglés | MEDLINE | ID: mdl-38346534

RESUMEN

In a recent mechanistic study, octopamine was shown to promote proton transport over the branchial epithelium in green crabs, Carcinus maenas. Here, we follow up on this finding by investigating the involvement of octopamine in an environmental and physiological context that challenges acid-base homeostasis, the response to short-term high pCO2 exposure (400 Pa) in a brackish water environment. We show that hyperregulating green crabs experienced a respiratory acidosis as early as 6 h of exposure to hypercapnia, with a rise in hemolymph pCO2 accompanied by a simultaneous drop of hemolymph pH. The slightly delayed increase in hemolymph HCO3- observed after 24 h helped to restore hemolymph pH to initial values by 48 h. Circulating levels of the biogenic amine octopamine were significantly higher in short-term high pCO2 exposed crabs compared to control crabs after 48 h. Whole animal metabolic rates, intracellular levels of octopamine and cAMP, as well as branchial mitochondrial enzyme activities for complex I + III and citrate synthase were unchanged in posterior gill #7 after 48 h of hypercapnia. However, application of octopamine in gill respirometry experiments suppressed branchial metabolic rate in posterior gills of short-term high pCO2 exposed animals. Furthermore, branchial enzyme activity of cytochrome C oxidase decreased in high pCO2 exposed crabs after 48 h. Our results indicate that hyperregulating green crabs are capable of quickly counteracting a hypercapnia-induced respiratory acidosis. The role of octopamine in the acclimation of green crabs to short-term hypercapnia seems to entail the alteration of branchial metabolic pathways, possibly targeting mitochondrial cytochrome C in the gill. Our findings help advancing our current limited understanding of endocrine components in hypercapnia acclimation. SUMMARY STATEMENT: Acid-base compensation upon short-term high pCO2 exposure in hyperregulating green crabs started after 6 h and was accomplished by 48 h with the involvement of the biogenic amine octopamine, accumulation of hemolymph HCO3-, and regulation of mitochondrial complex IV (cytochrome C oxidase).


Asunto(s)
Acidosis Respiratoria , Braquiuros , Decápodos , Animales , Hipercapnia/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Octopamina/metabolismo , Acidosis Respiratoria/metabolismo , Braquiuros/fisiología , Branquias/metabolismo
8.
BMC Microbiol ; 24(1): 57, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38350856

RESUMEN

BACKGROUND: Sesarmid crabs dominate mangrove habitats as the major primary consumers, which facilitates the trophic link and nutrient recycling in the ecosystem. Therefore, the adaptations and mechanisms of sesarmid crabs to herbivory are not only crucial to terrestrialization and its evolutionary success, but also to the healthy functioning of mangrove ecosystems. Although endogenous cellulase expressions were reported in crabs, it remains unknown if endogenous enzymes alone can complete the whole lignocellulolytic pathway, or if they also depend on the contribution from the intestinal microbiome. We attempt to investigate the role of gut symbiotic microbes of mangrove-feeding sesarmid crabs in plant digestion using a comparative metagenomic approach. RESULTS: Metagenomics analyses on 43 crab gut samples from 23 species of mangrove crabs with different dietary preferences revealed a wide coverage of 127 CAZy families and nine KOs targeting lignocellulose and their derivatives in all species analyzed, including predominantly carnivorous species, suggesting the crab gut microbiomes have lignocellulolytic capacity regardless of dietary preference. Microbial cellulase, hemicellulase and pectinase genes in herbivorous and detritivorous crabs were differentially more abundant when compared to omnivorous and carnivorous crabs, indicating the importance of gut symbionts in lignocellulose degradation and the enrichment of lignocellulolytic microbes in response to diet with higher lignocellulose content. Herbivorous and detritivorous crabs showed highly similar CAZyme composition despite dissimilarities in taxonomic profiles observed in both groups, suggesting a stronger selection force on gut microbiota by functional capacity than by taxonomy. The gut microbiota in herbivorous sesarmid crabs were also enriched with nitrogen reduction and fixation genes, implying possible roles of gut microbiota in supplementing nitrogen that is deficient in plant diet. CONCLUSIONS: Endosymbiotic microbes play an important role in lignocellulose degradation in most crab species. Their abundance is strongly correlated with dietary preference, and they are highly enriched in herbivorous sesarmids, thus enhancing their capacity in digesting mangrove leaves. Dietary preference is a stronger driver in determining the microbial CAZyme composition and taxonomic profile in the crab microbiome, resulting in functional redundancy of endosymbiotic microbes. Our results showed that crabs implement a mixed mode of digestion utilizing both endogenous and microbial enzymes in lignocellulose degradation, as observed in most of the more advanced herbivorous invertebrates.


Asunto(s)
Braquiuros , Celulasa , Microbioma Gastrointestinal , Lignina , Microbiota , Humanos , Animales , Herbivoria , Braquiuros/fisiología , Microbiota/genética , Celulasa/genética , Nitrógeno
9.
J Neurophysiol ; 131(3): 509-515, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38264774

RESUMEN

Nervous systems have evolved to function consistently in the face of the normal environmental fluctuations experienced by animals. The stomatogastric nervous system (STNS) of the crab, Cancer borealis, produces a motor output that has been studied for its remarkable robustness in response to single global perturbations. Changes in environments, however, are often complex and multifactorial. Therefore, we studied the robustness of the pyloric network in the stomatogastric ganglion (STG) in response to simultaneous perturbations of temperature and pH. We compared the effects of elevated temperatures on the pyloric rhythm at control, acid, or base pHs. In each pH recordings were made at 11°C, and then the temperature was increased until the rhythms became disorganized ("crashed"). Pyloric burst frequencies and phase relationships showed minor differences between pH groups until reaching close to the crash temperatures. However, the temperatures at which the rhythms were disrupted were lower in the two extreme pH conditions. This indicates that one environmental stress can make an animal less resilient to a second stressor.NEW & NOTEWORTHY Resilience to environmental fluctuations is important for all animals. It is common that animals encounter multiple stressful events at the same time, the cumulative impacts of which are largely unknown. This study examines the effects of temperature and pH on the nervous system of crabs that live in the fluctuating environments of the Northern Atlantic Ocean. The ranges of tolerance to one perturbation, temperature, are reduced under the influence of a second, pH.


Asunto(s)
Braquiuros , Píloro , Animales , Temperatura , Píloro/fisiología , Ganglios de Invertebrados/fisiología , Braquiuros/fisiología
10.
Nature ; 626(7997): 111-118, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297171

RESUMEN

The recovery of top predators is thought to have cascading effects on vegetated ecosystems and their geomorphology1,2, but the evidence for this remains correlational and intensely debated3,4. Here we combine observational and experimental data to reveal that recolonization of sea otters in a US estuary generates a trophic cascade that facilitates coastal wetland plant biomass and suppresses the erosion of marsh edges-a process that otherwise leads to the severe loss of habitats and ecosystem services5,6. Monitoring of the Elkhorn Slough estuary over several decades suggested top-down control in the system, because the erosion of salt marsh edges has generally slowed with increasing sea otter abundance, despite the consistently increasing physical stress in the system (that is, nutrient loading, sea-level rise and tidal scour7-9). Predator-exclusion experiments in five marsh creeks revealed that sea otters suppress the abundance of burrowing crabs, a top-down effect that cascades to both increase marsh edge strength and reduce marsh erosion. Multi-creek surveys comparing marsh creeks pre- and post-sea otter colonization confirmed the presence of an interaction between the keystone sea otter, burrowing crabs and marsh creeks, demonstrating the spatial generality of predator control of ecosystem edge processes: densities of burrowing crabs and edge erosion have declined markedly in creeks that have high levels of sea otter recolonization. These results show that trophic downgrading could be a strong but underappreciated contributor to the loss of coastal wetlands, and suggest that restoring top predators can help to re-establish geomorphic stability.


Asunto(s)
Braquiuros , Estuarios , Nutrias , Conducta Predatoria , Erosión del Suelo , Humedales , Animales , Biomasa , Braquiuros/fisiología , Nutrias/fisiología , Estados Unidos , Plantas , Elevación del Nivel del Mar , Olas de Marea , Nutrientes/metabolismo , Cadena Alimentaria
11.
J Neurophysiol ; 131(2): 417-434, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38197163

RESUMEN

Network flexibility is important for adaptable behaviors. This includes neuronal switching, where neurons alter their network participation, including changing from single- to dual-network activity. Understanding the implications of neuronal switching requires determining how a switching neuron interacts with each of its networks. Here, we tested 1) whether "home" and second networks, operating via divergent rhythm generation mechanisms, regulate a switching neuron and 2) if a switching neuron, recruited via modulation of intrinsic properties, contributes to rhythm or pattern generation in a new network. Small, well-characterized feeding-related networks (pyloric, ∼1 Hz; gastric mill, ∼0.1 Hz) and identified modulatory inputs make the isolated crab (Cancer borealis) stomatogastric nervous system (STNS) a useful model to study neuronal switching. In particular, the neuropeptide Gly1-SIFamide switches the lateral posterior gastric (LPG) neuron (2 copies) from pyloric-only to dual-frequency pyloric/gastric mill (fast/slow) activity via modulation of LPG-intrinsic properties. Using current injections to manipulate neuronal activity, we found that gastric mill, but not pyloric, network neurons regulated the intrinsically generated LPG slow bursting. Conversely, selective elimination of LPG from both networks using photoinactivation revealed that LPG regulated gastric mill neuron-firing frequencies but was not necessary for gastric mill rhythm generation or coordination. However, LPG alone was sufficient to produce a distinct pattern of network coordination. Thus, modulated intrinsic properties underlying dual-network participation may constrain which networks can regulate switching neuron activity. Furthermore, recruitment via intrinsic properties may occur in modulatory states where it is important for the switching neuron to actively contribute to network output.NEW & NOTEWORTHY We used small, well-characterized networks to investigate interactions between rhythmic networks and neurons that switch their network participation. For a neuron switching into dual-network activity, only the second network regulated its activity in that network. In addition, the switching neuron was sufficient but not necessary to coordinate second network neurons and regulated their activity levels. Thus, regulation of switching neurons may be selective, and a switching neuron is not necessarily simply a follower in additional networks.


Asunto(s)
Braquiuros , Neuronas , Animales , Neuronas/fisiología , Píloro/fisiología , Braquiuros/fisiología , Ganglios de Invertebrados/fisiología , Periodicidad , Red Nerviosa/fisiología
12.
Artículo en Inglés | MEDLINE | ID: mdl-38070330

RESUMEN

In the present study, BGISEQ-500 RNA-Seq technology was adopted to investigate how Scylla paramamosain adapts to salinity tolerance at the molecular level and explores changes in gene expression linked to salinity adaptation following exposure to both low salinity (5 ‰) and standard salinity (23 ‰) conditions. A total of 1100 and 520 differentially expressed genes (DEGs) were identified in the anterior and posterior gills, respectively, and their corresponding expression patterns were visualized in volcano plots and a heatmap. Further analysis highlighted significant enrichment of well-established gene functional categories and signaling pathways, including those what associated with cellular stress response, ion transport, energy metabolism, amino acid metabolism, H2O transport, and physiological stress compensation. We also selected key DEGs within the anterior and posterior gills that encode pivotal stress adaptation and tolerance modulators, including AQP, ABCA1, HSP 10, A35, CAg, NKA, VPA, CAc, and SPS. Interestingly, A35 in the gills might regulate osmolality by binding CHH in response to low salinity stress or serve as a mechanism for energy compensation. Taken together, our findings elucidated the intricate molecular mechanism employed by S. paramamosain for salinity adaptation, which involved distinct gene expression patterns in the anterior and posterior gills. These findings provide the foothold for subsequent investigations into salinity-responsive candidate genes and contribute to a deeper understanding of S. paramamosain's adaptation mechanisms in low-salinity surroundings, which is crucial for the development of low-salinity species cultivation and the establishment of a robust culture model.


Asunto(s)
Braquiuros , Animales , Braquiuros/fisiología , Salinidad , Branquias/metabolismo , Perfilación de la Expresión Génica , Expresión Génica
13.
Ecology ; 105(1): e4207, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37948134

RESUMEN

Invasive predators can cause substantial evolutionary change in native prey populations. Although invasions by predators typically occur over large scales, their distributions are usually characterized by substantial spatiotemporal heterogeneity that can lead to patchiness in the response of native prey species. Our ability to understand how local variation shapes patterns of inducible defense expression has thus far been limited by insufficient replication of populations within regions. Here, we examined local and regional variation in the inducible defenses of 12 native marine snail (Littorina obtusata) populations within two geographic regions in the Gulf of Maine that are characterized by vastly different contact histories with the invasive predatory green crab (Carcinus maenas). When exposed in the field to waterborne risk cues from the green crab for 90 days, snails expressed plastic increases in shell thickness that reduced their vulnerability to this shell-crushing predator. Despite significant differences in contact history with this invasive predator, snail populations from both regions produced similar levels of shell thickness and shell thickness plasticity in response to risk cues. Such phenotypic similarity emerged even though there were substantial geographic differences in the shell thickness of juvenile snails at the beginning of the experiment, and we suggest that it may reflect the effects of warming ocean temperatures and countergradient variation. Consistent with plasticity theory, a trend in our results suggests that southern snail populations, which have a longer contact history with the green crab, paid less in the form of reduced tissue mass for thicker shells than northern populations.


Asunto(s)
Braquiuros , Caracoles , Animales , Caracoles/genética , Braquiuros/fisiología , Conducta Predatoria/fisiología , Evolución Biológica , Señales (Psicología)
14.
J Neurosci ; 44(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37968117

RESUMEN

Neuromodulation lends flexibility to neural circuit operation but the general notion that different neuromodulators sculpt neural circuit activity into distinct and characteristic patterns is complicated by interindividual variability. In addition, some neuromodulators converge onto the same signaling pathways, with similar effects on neurons and synapses. We compared the effects of three neuropeptides on the rhythmic pyloric circuit in the stomatogastric ganglion of male crabs, Cancer borealis Proctolin (PROC), crustacean cardioactive peptide (CCAP), and red pigment concentrating hormone (RPCH) activate the same modulatory inward current, I MI, and have convergent actions on synapses. However, while PROC targets all four neuron types in the core pyloric circuit, CCAP and RPCH target the same subset of only two neurons. After removal of spontaneous neuromodulator release, none of the neuropeptides restored the control cycle frequency, but all restored the relative timing between neuron types. Consequently, differences between neuropeptide effects were mainly found in the spiking activity of different neuron types. We performed statistical comparisons using the Euclidean distance in the multidimensional space of normalized output attributes to obtain a single measure of difference between modulatory states. Across preparations, the circuit output in PROC was distinguishable from CCAP and RPCH, but CCAP and RPCH were not distinguishable from each other. However, we argue that even between PROC and the other two neuropeptides, population data overlapped enough to prevent reliable identification of individual output patterns as characteristic for a specific neuropeptide. We confirmed this notion by showing that blind classifications by machine learning algorithms were only moderately successful.Significance Statement It is commonly assumed that distinct behaviors or circuit activities can be elicited by different neuromodulators. Yet it is unknown to what extent these characteristic actions remain distinct across individuals. We use a well-studied circuit model of neuromodulation to examine the effects of three neuropeptides, each known to produce a distinct activity pattern in controlled studies. We find that, when compared across individuals, the three peptides elicit activity patterns that are either statistically indistinguishable or show too much overlap to be labeled characteristic. We ascribe this to interindividual variability and overlapping subcellular actions of the modulators. Because both factors are common in all neural circuits, these findings have broad significance for understanding chemical neuromodulatory actions while considering interindividual variability.


Asunto(s)
Braquiuros , Neuropéptidos , Masculino , Humanos , Animales , Neuropéptidos/metabolismo , Péptidos/farmacología , Neuronas/fisiología , Neurotransmisores/farmacología , Transducción de Señal , Braquiuros/fisiología , Ganglios de Invertebrados/fisiología
15.
J Exp Biol ; 227(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38149660

RESUMEN

Early pioneering studies by Autrum on terrestrial arthropods first revealed that the visual systems of arthropods reflected their lifestyles and habitats. Subsequent studies have examined and confirmed Autrum's hypothesis that visual adaptions are driven by predator-prey interactions and activity cycles, with rapidly moving predatory diurnal species generally possessing better temporal resolution than slower moving nocturnal species. However, few studies have compared the vision between diurnal herbivores and nocturnal predators. In this study, the visual physiology of a nocturnal fast-moving predatory crab, the Atlantic ghost crab (Ocypode quadrata) and a diurnal herbivorous crab, the mangrove tree crab (Aratus pisonii), was examined. Spectral sensitivity, irradiance sensitivity and temporal resolution of the crabs were quantified using the electroretinogram (ERG), while the spatial resolution was calculated utilizing morphological methods. Both O. quadrata and A. pisonii had a single dark-adapted spectral sensitivity peak (494 and 499 nm, respectively) and chromatic adaptation had no effect on their spectral sensitivity, indicating that both species have monochromatic visual systems. The temporal resolution of O. quadrata was not significantly different from that of A. pisonii, but O. quadrata did possess a significantly greater spatial resolution and irradiance sensitivity. Both species possess an acute zone in the anterior region of their eyes. The data presented in this study will aid in the current understanding of the correlation between visual physiology and the life history of the animal.


Asunto(s)
Braquiuros , Animales , Braquiuros/fisiología , Ecosistema , Ojo , Electrorretinografía , Fenómenos Fisiológicos Oculares
16.
Artículo en Inglés | MEDLINE | ID: mdl-38154166

RESUMEN

The mud crab (Scylla paramamosain) possesses extensive regenerative abilities, enabling it to replace missing body parts, including claws, legs, and even eyes. Studying the genetic and molecular mechanisms underlying regenerative ability in diverse animal phyla has the potential to provide new insights into regenerative medicine in humans. In the present study, we performed mRNA sequencing to reveal the genetic mechanisms underlying the claw regeneration in mud crab. Several differentially expressed genes (DEGs) were expressed in biological pathways associated with cuticle synthase, collagen synthase, tissue regeneration, blastema formation, wound healing, cell cycle, cell division, and cell migration. The top GO enrichment terms were microtubule-based process, collagen trimer, cell cycle process, and extracellular matrix structural constituent. The most enriched KEGG pathways were ECM-receptor interaction and focal adhesion. The genes encoding key functional proteins, such as collagen alpha, cuticle protein, early cuticle protein, arthrodial cuticle protein, dentin sialophosphoprotein (DSPP), epidermal growth factor receptor (EGFR), kinesin family member C1 (KIFC1), and DNA replication licensing factor mcm2-like (MCM2) were the most significant and important DEGs suspected to participate in claw regeneration. The findings of this research offer a comprehensive and insightful understanding of the genetic and molecular mechanisms underlying claw regeneration in S. paramamosain. By elucidating the specific genes and molecular pathways implicated in this process, our study contributes significantly to the broader field of regenerative biology and offers potential avenues for further exploration in crustacean limb regeneration.


Asunto(s)
Braquiuros , Animales , Braquiuros/fisiología , Colágeno/genética , Colágeno/metabolismo , Perfilación de la Expresión Génica
17.
Sci Rep ; 13(1): 21033, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030652

RESUMEN

Transitions to physically different environments, such as the water-to-land transition, proved to be the main drivers of relevant evolutionary events. Brachyuran crabs evolved remarkable morphological, behavioral, and physiological adaptations to terrestrial life. Terrestrial species evolved new respiratory structures devoted to replace or support the gills, a multifunctional organ devoted to gas exchanges, ion-regulation and nitrogen excretion. It was hypothesized that microorganisms associated with respiratory apparatus could have facilitated the processes of osmoregulation, respiration, and elimination of metabolites along this evolutionary transition. To test if crab species with different breathing adaptations may host similar microbial communities on their gills, we performed a comparative targeted-metagenomic analysis, selecting two marine and six terrestrial crabs belonging to different families and characterised by different breathing adaptations. We analysed anterior and posterior gills separately according to their different and specific roles. Regardless of their terrestrial or marine adaptations, microbial assemblages were strongly species-specific indicating a non-random association between the host and its microbiome. Significant differences were found in only two terrestrial species when considering posterior vs. anterior gills, without any association with species-specific respiratory adaptations. Our results suggest that all the selected species are strongly adapted to the ecological niche and specific micro-habitat they colonise.


Asunto(s)
Braquiuros , Microbiota , Humanos , Animales , Braquiuros/fisiología , Branquias/metabolismo , Respiración , Frecuencia Respiratoria
18.
J Exp Biol ; 226(20)2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37732387

RESUMEN

Most animals rely on visual information for a variety of everyday tasks. The information available to a visual system depends in part on its spatial resolving power and contrast sensitivity. Because of their competing demands for physical space within an eye, these traits cannot simultaneously be improved without increasing overall eye size. The contrast sensitivity function is an integrated measure of visual performance that measures both resolution and contrast sensitivity. Its measurement helps us identify how different species have made a trade-off between contrast sensitivity and spatial resolution. It further allows us to identify the evolutionary drivers of sensory processing and visually mediated behaviour. Here, we measured the contrast sensitivity function of the fiddler crab Gelasimus dampieri using its optokinetic responses to wide-field moving sinusoidal intensity gratings of different orientations, spatial frequencies, contrasts and speeds. We further tested whether the behavioural state of the crabs (i.e. whether crabs are actively walking or not) affects their optokinetic gain and contrast sensitivity. Our results from a group of five crabs suggest a minimum perceived contrast of 6% and a horizontal and vertical visual acuity of 0.4 cyc deg-1 and 0.28 cyc deg-1, respectively, in the crabs' region of maximum optomotor sensitivity. Optokinetic gain increased in moving crabs compared with restrained crabs, adding another example of the importance of naturalistic approaches when studying the performance of animals.


Asunto(s)
Braquiuros , Sensibilidad de Contraste , Animales , Braquiuros/fisiología , Agudeza Visual
19.
Fish Shellfish Immunol ; 141: 109064, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37689227

RESUMEN

Sacculina carcini is an endoparasite of the green crab, Carcinus maenas. This parasite induces behavioural changes in its host and affects its metabolism by inhibiting moulting and reproduction. Using a proteomic approach in mass spectrometry, we studied the haemolymph proteomes of healthy and parasitized wild green crabs from Brittany, France to identify proteins that are differentially expressed as a consequence of parasitization. We also investigated specific proteins involved in reproduction, moulting, and immunity. We detected 77 proteins for females and 53 proteins for males that were differentially present between the healthy and parasitized crabs, some of which were sex-specific. Detection of these differentially expressed proteins suggests that the parasite can inhibit and promote different aspects of the immune response of the host. Sacculina appears to inhibit host melanisation for self-protection, while promoting the presence of immune factors, such as antimicrobial peptides to cope with possible bacterial superinfections. Moreover, one protein, juvenile hormone esterase-like carboxylesterase, was 17-times more abundant in parasitized crabs than in healthy crabs and may be responsible for inhibiting moulting and reproduction in parasitized crabs, thus ensuring the success of Sacculina reproduction.


Asunto(s)
Braquiuros , Femenino , Masculino , Animales , Braquiuros/fisiología , Proteoma , Proteómica , Hemolinfa , Control de Enfermedades Transmisibles
20.
J Comp Physiol B ; 193(5): 509-522, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563322

RESUMEN

Crustaceans' endocrinology is a vastly understudied area of research. The major focus of the studies on this topic to date has been on the molting cycle (and in particular, the role of crustacean hyperglycemic hormone (CHH)), as well as the role of other hormones in facilitating physiological phenotypic adjustments to salinity changes. Additionally, while many recent studies have been conducted on the acclimation and adaptation capacity of crustaceans to a changing environment, only few have investigated internal hormonal balance especially with respect to an endocrine response to environmental challenges. Consequently, our study aimed to identify and characterize endocrine components of acid-base regulation in the European green crab, Carcinus maenas. We show that both the biogenic amine octopamine (OCT) and the CHH are regulatory components of branchial acid-base regulation. While OCT suppressed branchial proton excretion, CHH seemed to promote it. Both hormones were also capable of enhancing branchial ammonia excretion. Furthermore, mRNA abundance for branchial receptors (OCT-R), or G-protein receptor activated soluble guanylate cyclase (sGC1b), are affected by environmental change such as elevated pCO2 (hypercapnia) and high environmental ammonia (HEA). Our findings support a role for both OCT and CHH in the general maintenance of steady-state acid-base maintenance in the gill, as well as regulating the acid-base response to environmental challenges that C. maenas encounters on a regular basis in the habitats it dwells in and more so in the future ocean.


Asunto(s)
Braquiuros , Hormonas de Invertebrados , Animales , Braquiuros/fisiología , Octopamina , Amoníaco , Proteínas de Artrópodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA